首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13692篇
  免费   994篇
  国内免费   113篇
工业技术   14799篇
  2024年   33篇
  2023年   265篇
  2022年   466篇
  2021年   899篇
  2020年   772篇
  2019年   838篇
  2018年   941篇
  2017年   864篇
  2016年   820篇
  2015年   483篇
  2014年   768篇
  2013年   1408篇
  2012年   932篇
  2011年   988篇
  2010年   681篇
  2009年   611篇
  2008年   436篇
  2007年   362篇
  2006年   313篇
  2005年   203篇
  2004年   185篇
  2003年   165篇
  2002年   120篇
  2001年   91篇
  2000年   90篇
  1999年   81篇
  1998年   149篇
  1997年   100篇
  1996年   76篇
  1995年   69篇
  1994年   56篇
  1993年   60篇
  1992年   50篇
  1991年   36篇
  1990年   39篇
  1989年   31篇
  1988年   23篇
  1987年   21篇
  1986年   33篇
  1985年   26篇
  1984年   28篇
  1983年   25篇
  1982年   21篇
  1981年   19篇
  1980年   19篇
  1979年   14篇
  1978年   18篇
  1977年   18篇
  1976年   19篇
  1975年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
This paper presents robust and adaptive boundary control designs to stabilize the two‐dimensional vibration of hybrid shaft model. The hybrid shaft is mathematically represented by a set of partial differential equations, governing the shaft vibrations, coupled to ordinary differential equations, describing rigid body spinning and dynamic boundary conditions. The control objective is to stabilize the transverse vibrations of the perturbed shaft while regulating the spinning rate. To achieve this, the paper first establishes robust boundary control laws that fulfil the control objective in the presence of modeling uncertainties and external disturbances operating over the shaft domain and boundary. Lyapunov‐based analyses show that the proposed robust control exponentially stabilizes the shaft with vanishing distributive perturbations, while assuring ultimately bounded vibrations in the case of nonvanishing perturbations. Then, adaptive control philosophy is utilized to achieve redesigned robust controllers that only use online adaptation of control gains without acquiring the knowledge of bounds on perturbations, as well as dynamic parameters. An advantage of this design is avoiding an overconservative robust control law, which may induce poor stability and chattering in tackling system perturbations with unknown upper bounds. Simulations through finite element method illustrate the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
22.
Solubility is one of the most indispensable physicochemical properties determining the compatibility of components of a blending system. Research has been focused on the solubility of carbon dioxide in polymers as a significant application of green chemistry. To replace costly and time-consuming experiments, a novel solubility prediction model based on a decision tree, called the stochastic gradient boosting algorithm, was proposed to predict CO2 solubility in 13 different polymers, based on 515 published experimental data lines. The results indicate that the proposed ensemble model is an effective method for predicting the CO2 solubility in various polymers, with highly satisfactory performance and high efficiency. It produces more accurate outputs than other methods such as machine learning schemes and an equation of state approach.  相似文献   
23.
24.
Microbial fuel cell (MFC) is a promising technology for simultaneous wastewater treatment and energy harvesting. The properties of the anode material play a critical role in the performance of the MFC. In this study, graphene oxide was prepared by a modified hummer's method. A thin layer of graphene oxide was incorporated on the carbon brush using an electrophoretic technique. The deoxygenated graphene oxide formed on the surface of the carbon brush (RGO-CB) was investigated as a bio-anode in MFC operated with real wastewater. The performance of the MFC using the RGO-CB was compared with that using plain carbon brush anode (PCB). Results showed that electrophoretic deposition of graphene oxide on the surface of carbon brush significantly enhanced the performance of the MFC, where the power density increased more than 10 times (from 33 mWm?2 to 381 mWm?2). Although the COD removal was nearly similar for the two MFCs, i.e., with PCB and RGO-CB; the columbic efficiency significantly increased in the case of RGO-CB anode. The improved performance in the case of the modified electrode was related to the role of the graphene in improving the electron transfer from the microorganism to the anode surface, as confirmed from the electrochemical impedance spectroscopy measurements.  相似文献   
25.
We explore a truncation error criterion to steer adaptive step length refinement and coarsening in incremental-iterative path following procedures, applied to problems in large-deformation structural mechanics. Elaborating on ideas proposed by Bergan and collaborators in the 1970s, we first describe an easily computable scalar stiffness parameter whose sign and rate of change provide reliable information on the local behavior and complexity of the equilibrium path. We then derive a simple scaling law that adaptively adjusts the length of the next step based on the rate of change of the stiffness parameter at previous points on the path. We show that this scaling is equivalent to keeping a local truncation error constant in each step. We demonstrate with numerical examples that our adaptive method follows a path with a significantly reduced number of points compared to an analysis with uniform step length of the same fidelity level. A comparison with Abaqus illustrates that the truncation error criterion effectively concentrates points around the smallest-scale features of the path, which is generally not possible with automatic incrementation solely based on local convergence properties.  相似文献   
26.
Ahmad  Bilal  Jian  Wang  Enam  Rabia Noor  Abbas  Ali 《Wireless Personal Communications》2021,118(2):1055-1073

As per the most recent literature, Orthogonal Frequency Division Multiplexing (OFDM), a multi access technique, is considered most suitable for the 3G, 4G and 5G techniques in high speed wireless communication. What made OFDM most popular is its ability to deliver high bandwidth efficiency and superior data rate. Besides it, high value of peak to average power ratio (PAPR) and Inter Carrier Interference (ICI) are the challenges to tackle down via appropriate mitigation scheme. As a research contribution in the present work, an improved self-cancellation (SC) technique is designed and simulated through Simulink to mitigate the effect of ICI. This novel proposed technique (Improved SC) is designed over discrete wavelet transform (DWT) based OFDM and compared with conventional SC scheme over different channel conditions i.e. AWGN and Rayleigh fading environments. It is found that proposed DWT-OFDM with Improved SC scheme outperforms conventional SC technique significantly, under both AWGN and Rayleigh channel conditions. Further, in order to justify the novelty in the research contribution, a Split-DWT based Simulink model for Improved SC scheme is investigated to analyse the BER performance. This Split-DWT based Simulink model presented here foretells the future research potential in wavelet hybridization of OFDM to side-line ICI effects more efficiently.

  相似文献   
27.
Microsystem Technologies - The purpose of the present enquiry is to analyse the mechanics of an incompressible fluid, with water as base fluid, through a radially symmetric plumb duct with...  相似文献   
28.
With superior properties of Mg such as high hydrogen storage capacity (7.6 wt% H/MgH2), low price, and low density, Mg has been widely studied as a promising candidate for solid-state hydrogen storage systems. However, a harsh activation procedure, slow hydrogenation/dehydrogenation process, and a high temperature for dehydrogenation prevent the use of Mg-based metal hydrides for practical applications. For these reasons, Mg-based alloys for hydrogen storage systems are generally alloyed with other elements to improve hydrogen sorption properties. In this article, we have added Na to cast Mg–La alloys and achieved a significant improvement in hydrogen absorption kinetics during the first activation cycle. The role of Na in Mg–La has been discussed based on the findings from microstructural observations, crystallography, and first principles calculations based on density functional theory. From our results in this study, we have found that the Na doped surface of Mg–La alloy systems have a lower adsorption energy for H2 compared to Na-free surfaces which facilitates adsorption and dissociation of hydrogen molecules leading to improvement of absorption kinetic. The effect of Na on the microstructure of these alloys, such as eutectic refinement and a density of twins is not highly correlated with absorption kinetics.  相似文献   
29.
Bioactive glasses (BGs) have been used for bone formation and bone repair processes in recent years. This study investigated the titanium substitution effect on 58S BGs (Ti-BGs) 60SiO2-(36 − X)CaO-4P2O5-XTiO2 (X = 0, 3, and 5 mol.%) prepared by the sol-gel technique, and the main goal was to find the optimum amount of titanium in Ti-BGs. Synthesized BGs, which were investigated after immersion in simulated body fluid (SBF), were tested by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy. Moreover alkaline phosphate (ALP) activity, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and antibacterial studies were employed to investigate the biological properties of Ti-BGs. According to the FTIR and XRD test results, hydroxyapatite (HA) formation on Ti-BGs surfaces was confirmed. Meanwhile, the presence of 5 mol.% compared to 3 mol.% increased the HA grain distribution and their size on the Ti-BGs surface. Additionally, MTT and ALP results confirmed that the optimal amount of titanium substitution in BG was 5 mol.%. Since 5 mol.% Ti incorporated BG (BG-5) had the highest biocompatibility level, antibacterial properties, maximum cell proliferation, and ALP activity among the synthesized Ti-BGs, it is presented as the best candidate for further in vivo investigations.  相似文献   
30.
This study investigated the use of recycled tire-derived aggregate (TDA) mixed with kaolin as a method of increasing the ultimate bearing capacity ( UBC) of a strip footing. Thirteen 1g physical modeling tests were prepared in a rigid box of 0.6 m × 0.9 m in plan and 0.6 m in height. During sample preparation, 0%, 20%, 40%, or 60% (by weight) of powdery, shredded, small-sized granular (G 1–4 mm) or large-sized granular (G 5–8 mm) TDA was mixed with the kaolin. A strip footing was then placed on the stabilized kaolin and was caused to fail under stress-controlled conditions to determine the UBC. A rigorous 3D finite element analysis was developed in Optum G-3 to determine the UBC values based on the experimental test results. The experimental results showed that, except for the 20% powdery TDA, the TDA showed an increase in the UBC of the strip footing. When kaolin mixed with 20% G (5–8 mm), the UBC showed a threefold increase over that for the unreinforced case. The test with 20% G (1–4 mm) recorded the highest subgrade modulus. It was observed that the UBC calculated using finite element modeling overestimated the experimental UBC by an average of 9%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号